Расчет электрической цепи примеры расчетных заданий по электротехнике

Расчет токов коротких замыканий в энергосистеме методом симметричных составляющих.

В результате различного вида коротких замыканий в сложной энергосистеме возникает несимметричный режим. Расчет токов коротких замыканий в различных точках энергосистемы является важной инженерной задачей. Также расчеты выполняются методом симметричных составляющих.

В качестве примера рассмотрим определение тока однофазного короткого замыкания на землю в заданной точке простейшей энергосистемы. Символьная схема энергосистемы показана на рис. 110. Короткое замыкание фазы А на землю происходит в конце линии электропередачи.



В соответствии с теоремой о компенсации заменим (мысленно) несимметричный участок в точке короткого замыкания несимметричным трехфазным генератором (UA, UB, UC, причем UA =0). Несимметричную систему векторов напряжений разложим (мысленно) на симметричные составляющие UA1, UA2, UA0. Для каждой из симметричных составляющих схема цепи совершенно симметрична и может быть представлена в однофазном виде. Поэтому составляются однофазные схемы для прямой (рис. 111), обратной (рис. 112) и нулевой (рис. 113) последовательностей.

Далее в соответствии с теоремой об эквивалентном генераторе производится свертка расчетных схем для каждой из симметричных составляющих относительно выводов несимметричного участка ab. В результате свертки получаются простейшие одноконтурные схемы (рис. 114а, б, в):

 

 

 

 

 

 

 

 

 

 

 

 

Для каждой из расчетных схем (рис. 114а, б, в) составляются уравнения по 2-му закону Кирхгофа:

 (1)

  (2)

  (3)

В полученной системе уравнений Кирхгофа содержится 6 неизвестных величин (IA1, IA2, IA0, UA1, UA2, UA0) и ее непосредственное решение невозможно. Поэтому система уравнений Кирхгофа дополняется тремя недостающими уравнениями, вытекающими из вида короткого замыкания. В рассматриваемом примере в точке короткого замыкания напряжение фазы А равно нулю (UA = 0), а также токи фаз В и С равны нулю (IB = IC = 0). Дополнительные уравнения будут иметь вид:

 (4)

  (5)

 (6)

В результате совместного решения системы из 6-и уравнений определяются симметричные составляющие токов IA1, IA2, IA0. В рассматриваемом примере решение системы может быть выполнено в следующей последовательности.

1) Вычитаем почленно из уравнения (5) уравнение (6) и получаем:

, откуда следует, что IA1 = IA2.

2) Складываем почленно уравнение (5) и уравнение (6) и с учетом, что а2 – а = -1, получаем: , откуда следует, что IA1 = IA2 = IA0.

3) Складываем почленно уравнения (1), (2), (3) и с учетом уравнения (4) и равенства IA1 = IA2 = IA0 получаем:

, откуда следует решение для тока:

.

Все действительные токи определяются по методу наложения через соответствующие симметричные составляющие, например, ток короткого замыкания равен току фазы А:

.

Глава 4

Цепи со взаимной индуктивностью

Задача 4.1

С трансформатором без сердечника были сделаны два опыта холостого хода: а) к первичной обмотке приложено напряжение 200 В, вторичная разомкнута, при этом 10 А, 400 Вт, 100 В; б) ко вторичной обмотке приложено напряжение 150 В, первичная разомкнута, при этом 15 А, 500 Вт.

Определить: 1) сопротивление обмоток: , , , ; 2) сопротивление взаимоиндукции ; 3) коэффициент связи

Решение

1. По данным первого опыта холостого хода (а) определяются сопротивления первичной обмотки:

   Ом,   Ом,  Ом.

Из второго опыта (б) находятся сопротивления вторичной обмотки:

   Ом,  Ом,  Ом. 

2. Сопротивление взаимоиндукции:   Ом. 

3. Коэффициент связи: 

Частотные характеристики последовательного колебательного контура Рассмотрим частотные характеристики цепи при резонансе. В случае, когда на последовательную цепь воздействует источник синусоидального напряжения с частотой w, меняю­щейся от 0 до ¥, параметры цепи, а именно ее реактивное и полное сопротивления, меняются, что вызовет соответствующие изменения тока и падений напряжения на отдельных участках цепи. Построим функции названных выше сопротивлений в одних координатных осях
Переходные процессы в электрических цепях