Математика примеры решения задач

Из сказанного и рассмотренных примеров видно, что общие методы интегрирование требуют нешаблонного подхода, необходимы определенные навыки и сообразительность для приведения данных интегралов к табличным. Для некоторых видов интегралов имеются типовые приемы преобразований, приводящих эти интегралы к табличным.

Кратные интегралы.

  Как известно, интегрирование является процессом суммирования. Однако суммирование может производится неоднократно, что приводит нас к понятию кратных интегралов. Рассмотрение этого вопроса начнем с рассмотрения двойных интегралов.

Двойные интегралы.

 

  Рассмотрим на плоскости некоторую замкнутую кривую, уравнение которой

f(x, y) = 0.

 

 y

 

 

 

 

 

  Совокупность всех точек, лежащих внутри кривой и на самой кривой назовем замкнутой областью D. Если выбрать точки области без учета точек, лежащих на кривой, область будет называется незамкнутой область D.

  С геометрической точки зрения D - площадь фигуры, ограниченной контуром.

  Разобьем область D на n частичных областей сеткой прямых, отстоящих друг от друга по оси х на расстояние Dхi, а по оси у – на Dуi. Вообще говоря, такой порядок разбиения наобязателен, возможно разбиение области на частичные участки произвольной формы и размера.

Получаем, что площадь S делится на элементарные прямоугольники, площади которых равны Si = Dxi × Dyi .

В каждой частичной области возьмем произвольную точку Р(хi, yi) и составим интегральную сумму

где f – функция непрерывная и однозначная для всех точек области D.

  Если бесконечно увеличивать количество частичных областей Di, тогда, очевидно, площадь каждого частичного участка Si стремится к нулю.

 Определение: Если при стремлении к нулю шага разбиения области D интегральные суммы  имеют конечный предел, то этот предел называется двойным интегралом от функции f(x, y) по области D.

 

 

  С учетом того, что Si = Dxi × Dyi получаем:

 

 

  В приведенной выше записи имеются два знака S, т.к. суммирование производится по двум переменным х и у.

 Т.к. деление области интегрирования произвольно, также произволен и выбор точек Рi, то, считая все площади Si одинаковыми, получаем формулу:

 

 

Условия существования двойного интеграла.

Сформулируем достаточные условия существования двойного интеграла.

 

  Теорема. Если функция f(x, y) непрерывна в замкнутой области D, то двойной интеграл  существует.

 

 

  Теорема. Если функция f(x, y) ограничена в замкнутой области D и непрерывна в ней всюду, кроме конечного числа кусочно – гладких линий, то двойной интеграл  существует.

 

Свойства двойного интеграла.

 

1)

 

2)

 

3)  Если D = D1 + D2, то

 

4) Теорема о среднем. Двойной интеграл от функции f(x, y) равен произведению значения этой функции в некоторой точке области интегрирования на площадь области интегрирования.

 

 

5)  Если f(x, y) ³ 0 в области D, то  .

 

6) Если f1(x, y) £ f2(x, y), то .

 

7)  .

Пример 2.16. Найти площадь фигуры, ограниченной линиями , Решение. Для определения пределов интегрирования сделаем рисунок, из которого видно, что площадь проще вычислить по переменной , так как вдоль оси площади искомой фигуры образуют разности площадей криволинейных трапеций.
На главную