Векторная и линейная алгебра и аналитическая геометрия Контрольная работа

Задача 23. Найти область сходимости функционального ряда

Решение. Это частный случай функционального ряда – степенной ряд вида

Радиус сходимости R такого ряда можно найти по одной из формул:

  или .

Интервал абсолютной сходимости степенного ряда определяется неравенством . Вне этого интервала, при  ряд расходится. На концах интервала – в точках  поведение ряда исследуется особо.

Находим радиус сходимости для заданного ряда по первой формуле. Так как , получаем

Тогда ряд сходится, если , откуда , то есть .

Исследуем сходимость ряда в точках  и .

При   исходный ряд принимает вид

Это обобщенный гармонический сходящийся ряд ( сходится, если ).

При   получаем знакочередующийся ряд   Этот ряд сходится (притом абсолютно), так как сходится ряд из абсолютных величин его членов:

Итак, исходный ряд сходится для всех .

Задача 24. Найти коэффициенты  и  разложения в ряд Фурье функции 

Записать это разложение.

Решение. Воспользуемся формулами (36), (37) разложения в ряд Фурье функции , заданной на отрезке :

,

где

Найдем коэффициенты  и . Так как , получим

Так как  можно заменить более простой функцией , получим .

Подставляем найденные коэффициенты в ряд Фурье:

Задача 25. Найти коэффициенты  разложения в ряд Фурье по синусам функции

.

Решение. Коэффициенты  разложения функции в ряд Фурье по синусам определяются по формуле (41):

Тогда

Так как , получим

Задача 26. Найти общее решение дифференциального уравнения  .

Задача 28. Среди перечисленных дифференциальных уравнений найти уравнения в полных дифференциалах

ОСНОВНЫЕ ЗАДАЧИ АНАЛИТИЧЕСКОЙ ГЕОМЕТРИИ Основной метод аналитической геометрии - метод координат. Его сущность: каждой точке М поставлены в соответствие пара или тройка чисел, называемых ее координатами. Каждой фигуре поставлено в соответствие уравнение F(x,у)=0 или F(x,у,z)=0. Отсюда возникают две основные задачи аналитической геометрии: 1) по геометрическому свойству фигуры составить ее уравнение; 2) по уравнению исследовать свойства и форму геометрической фигуры.
Приложения кратных, криволинейных и поверхностных интегралов