Физика Примеры решения задач

Ангармонические колебания Нелинейный осциллятор. Физические системы, содержащие нелинейность. Автоколебания. Обратная связь. Условие самовозбуждения колебаний. Роль нелинейности. Фазовая плоскость генератора. Предельные циклы. Аттракторы. Понятие о релаксационных колебаниях.

Задачи

Силы тяготения. Гравитационное поле

4.1. Центры масс двух одинаковых однородных шаров находятся на расстоянии r = 1 м друг от друга. Масса m каждого шара равна 1 кг. Определить силу F гравитационного взаимодействия шаров.

4.2. Как велика сила F взаимного притяжения двух космических кораблей массой m = 10т каждый, если они сблизятся до расстояния r = 100 м?

4.3 Определить силу F взаимного притяжения двух соприкасающихся железных шаров диаметром d = 20 см каждый. Лекции по физике Механические и электромагнитные колебания

4.4. На какой высоте h над поверхностью Земли напряженность gh гравитационного поля равна 1 Н/кг? Радиус R Земли считать известным.

4.5. Ракета, пущенная вертикально вверх, поднялась на высоту h=3200 км и начала падать. Какой путь s пройдет ракета за первую секунду своего падения?

4.6. Радиус R планеты Марс равен 3,4 Мм, ее масса М = 6,4·1023 кг. Определить напряженность g гравитационного поля на поверхности Марса.

4.7. Радиус Земли в n=3,66 раза больше радиуса Луны; средняя плотность Земли в k=1,66 раза больше средней плотности Луны. Определить ускорение свободного падения gЛ на поверхности Луны, если на поверхности Земли ускорение свободного падения g считать известным.

4.8. Радиус R малой планеты равен 250 км, средняя плотность ρ=3 г/см3. Определить ускорение свободного падения g на поверхности планеты.

4.9. Масса Земли в n=81,6 раза больше массы Луны. Расстояние l между центрами масс Земли и Луны равно 60,3R (R — радиус Земли). На каком расстоянии r (в единицах R) от центра Земли находится точка, в которой суммарная напряженность гравитационного поля Земли и Луны равна нулю?

4.10. Искусственный спутник обращается вокруг Земли по окружности на высоте h=3,6 Мм. Определить линейную скорость v спутника. Радиус R Земли и ускорение свободного падения g на поверхности Земли считать известными.

4.11. Период Т вращения искусственного спутника Земли равен

2 ч. Считая орбиту спутника круговой, найти, на какой высоте А над поверхностью Земли движется спутник.

4.12. Стационарный искусственный спутник движется по окружности в плоскости земного экватора, оставаясь все время над одним и тем же пунктом земной поверхности. Определить угловую скорость ω спутника и радиус R его орбиты.

4.13. Планета Нептун в k=30 раз дальше от Солнца, чем Земля. Определить период Т обращения (в годах) Нептуна вокруг Солнца.

4.14. Луна движется вокруг Земли со скоростью υ1=1,02 км/с. Среднее расстояние l Луны от Земли равно 60,3 R (R — радиус Земли). Определить по этим данным, с какой скоростью υ2 должен двигаться искусственный спутник, вращающийся вокруг Земли на незначительной высоте над ее поверхностью.

4.15. Зная среднюю скорость υ1 движения Земли вокруг Солнца (30 км/с), определить, с какой средней скоростью υ2 движется малая планета, радиус орбиты которой в n=4 раза больше радиуса орбиты Земли.

4.16. Советская космическая ракета, ставшая первой искусственной планетой, обращается вокруг Солнца по эллипсу. Наименьшее расстояние rmin ракеты от Солнца равно 0,97, наибольшее расстояние rmax равно 1,31 а. е. (среднего расстояния Земли от Солнца). Определить период Т вращения (в годах) искусственной планеты.

4.17. Космическая ракета движется вокруг Солнца по орбите, почти совпадающей с орбитой Земли. При включении тормозного устройства ракета быстро теряет скорость и начинает падать на Солнце (рис. 4.6). Определить время t, в течение которого будет падать ракета.

Указание. Принять, что, падая на Солнце, ракета движется по эллипсу, большая ось которого очень мало отличается от радиуса орбиты Земли, а эксцентриситет — от единицы. Период обращения по эллипсу не зависит от эксцентриситета.

 4.18. Ракета, запущенная с Земли на Марс, летит, двигаясь вокруг Солнца по эллиптической орбите (рис. 4.7). Среднее расстояние r планеты Марс от Солнца равно 1,5 а. е. В течение какого времени t будет лететь ракета до встречи с Марсом?

Волновые процессы Типы волн. Фазовая скорость, длина волны, волновое число. Одномерное волновое уравнение. Интерференция волн. Стоячие волны. Упругие волны в газах, жидкостях и твердых телах. Энергетические характеристики упругих волн. Вектор Умова. Поведение звука на границе раздела двух сред. Эффект Доплера. Понятие об ударных волнах.
На главную