Физика Примеры решения задач

Электростатика Закон Кулона. Напряженность электрического поля. Принцип суперпозиции. Теорема Гаусса, примеры ее применения. Работа электростатического поля. Циркуляция электростатического поля. Потенциал электростатического поля и его связь с напряженностью.

Эффект Доплера *

7.28. Поезд проходит мимо станции со скоростью u=40 м/с. Частота v0 тона гудка электровоза равна 300 Гц. Определить кажущуюся частоту v тона для человека, стоящего на платформе, в двух случаях: 1) поезд приближается; 2) поезд удаляется.

7.29. Мимо неподвижного электровоза, гудок которого дает сигнал частотой v0=300 Гц, проезжает поезд со скоростью и=40 м/с. Какова кажущаяся частота v тона для пассажира, когда поезд приближается к электровозу? когда удаляется от него?

7.30. Мимо железнодорожной платформы проходит электропоезд. Наблюдатель, стоящий на платформе, слышит звук сирены поезда. Когда поезд приближается, кажущаяся частота звука v1=1100 Гц; когда удаляется, кажущаяся частота v2=900 Гц. Найти скорость и электровоза и частоту v0 звука, издаваемого сиреной.

7.31. Когда поезд проходит мимо неподвижного наблюдателя, высота тона звукового сигнала меняется скачком. Определить относительное изменение частоты v/v, если скорость и поезда равна 54 км/ч.

7.32. Резонатор и источник звука частотой v0=8 кГц расположены на одной прямой. Резонатор настроен на длину волны =4,2 см и установлен неподвижно. Источник звука может перемещаться по направляющим вдоль прямой. С какой скоростью u и в каком направлении должен двигаться источник звука, чтобы возбуждаемые им звуковые волны вызвали колебания резонатора?

7.33. Поезд движется со скоростью u=120 км/ч. Он дает свисток длительностью 0=5 с. Какова будет кажущаяся продолжительность  свистка для неподвижного наблюдателя, если: 1) поезд приближается к нему; 2) удаляется? Принять скорость звука равной 348 м/с.

7.34. Скорый поезд приближается к стоящему на путях электропоезду со скоростью и=72 км/ч. Электропоезд подает звуковой сигнал частотой v0=0,6 кГц. Определить кажущуюся частоту v звукового сигнала, воспринимаемого машинистом скорого поезда. Колебания и волны

7.35. На шоссе сближаются две автомашины со скоростями u1=30 м/с и u2=20 м/с. Первая из них подает звуковой сигнал частотой v1=600 Гц. Найти кажущуюся частоту v2 звука, воспринимаемого водителем второй автомашины, в двух случаях: 1) до встречи; 2) после встречи. Изменится ли ответ (если изменится, то как) в случае подачи сигнала второй машиной?

7.36, Узкий пучок ультразвуковых волн частотой v0=50 кГц направлен от неподвижного локатора к приближающейся подводной лодке. Определить скорость и подводной лодки, если частота v1 биений (разность частот колебаний источника и сигнала, отраженного от лодки) равна 250 Гц. Скорость  ультразвука в морской воде принять равной 1,5 км/с.

Энергия звуковых волн *

7.37. По цилиндрической трубе диаметром d=20 см и длиной l=5 м, заполненной сухим воздухом, распространяется звуковая волна средней за период интенсивностью I=50 мВт/м2. Найти энергию W звукового поля, заключенного в трубе.

 7.38. Интенсивность звука 1=1 Вт/м2. Определить среднюю объемную плотность <> энергии звуковой волны, если звук распространяется в сухом воздухе при нормальных условиях.

  7.39. Мощность N изотропного точечного источника звуковых волн равна 10 Вт. Какова средняя объемная плотность <> энергии на расстоянии г=10 м от источника волн? Температуру Т воздуха принять равной 250 К.

 7.40. Найти мощность N точечного изотропного источника звука, если на расстоянии r=25 м от него интенсивность I звука равна 20 мВт/м2. Какова средняя объемная плотность <> энергии на этом расстоянии?

Электростатическое поле в веществе Плоский конденсатор с диэлектриком. Энергия электрического диполя во внешнем электростатическом поле. Поляризация диэлектрика. Поляризационные заряды. Поляризованность. Электрическое смещение. Диэлектрическая проницаемость среды. Плотность энергии электрического поля в диэлектрике. Пьезо- и сегнетоэлектрики: свойства и применение.
На главную