Математика Дифференцируемость функций

Энергетика
Оборудование атомной станции
Реактор БРЕСТ-2400
Ядерная индустрия
Введение в экологию энергетики
Информатика
Архитектура ПК
Математика
Множества
Линейная и векторная алгебра
Последовательность
Решение задач
Дифференцируемость функций
Исследование функций
Многочлены с комплексными коэффициентами
Определенный интеграл
ТФКП примеры решения задач
Приложения кратных, криволинейных и поверхностных интегралов
Математика примеры решения задач
Примеры вычислений интегралов
Физика Электротехника
Примеры решения задач
Линейные электрические цепи
Теоретические основы
электротехники
Графика
Курс лекций Сопротивление материалов
Сопромат расчеты на прочность
Машиностроительное черчение
Инженерная графика
История искусства
Акварель в архитектурном чертеже.
Мастерская живописи и рисунка
Построение архитектурного пространства
История живописи
Компьютерная математика
MATLAB
Основы графической визуализации вычислений
Пользовательский интерфейс
Операторы и функции
Специальные математические функции
Многомерные массивы
Численные методы
Обработка данных
Основы программирования
Архитектура ПК

 

Определение производной функции. Задачи, приводящие к понятию производной.

Определение производной. Пусть функция y=f(x) определена в точке х и некоторой её окрестности. Придадим значению аргумента х приращение Dх (положительное или отрицательное, но не выводящее за пределы этой окрестности) и найдем соответствующее приращение функции Dу=f(x+Dх)- f(x). Передел отношения приращение функции Dу к приращению аргумента Dх при Dх ®0 называется производной функции y=f(x) в точке х.

Производная обратной функции.

Вывод формул производных функций  и .

Пусть для f(x): 1. выполняются условия Теор.5.6.5 об обратной функции (непрерывность и строгая монотонность на отрезке [a,b]). 2. в точке х0 существует неравная нулю производная f'(х0). Тогда обратная функция х = g(у) в точке у0= f(х0) также имеет производную, равную .

Основные правила дифференцирования.

 Здесь мы выведем основные формулы, применяющиеся при нахождении производных - формулы для производных суммы, произведения, частного и т.д. Значение функции в точке х+Dx нам удобно будет представлять в виде у(х+Dx)= у(х)+ Dу= у(х)+ у'(x) Dх + a(Dх) Dх, где a(Dх) - БМ при Dх ®0, следующим из определения для приращения функции: Dу = у(х+Dx)- у(x).

Примеры вычисления производной.

 вывод формул производных функций, в которых применяются только арифметические действия, обычно не представляет трудностей:

Односторонние и бесконечные производные.

 В этом разделе будут рассмотрены особые случаи, которые могут встретиться при нахождении производных.

Односторонние производные. Пусть х - правый или левый конец [a,b] отрезка, на котором определена функция. Тогда при вычислении предела отношения  в точке а мы можем рассматривать только случай , в точке b - только случай , т.е. искать односторонние пределы. Соответственно, полученные производные называются односторонними производными справа или слева. Графики функции будут иметь в этих случаях односторонние касательные.

Правила для вычисления дифференциала. Примеры вычисления дифференциала. Правила для вычисления дифференциала - прямое следствие правил дифференцирования (раздел 6.5):

Производные функций, заданных параметрически и неявно.

Производные функций, заданных параметрически. Пусть зависимость у от х задана через параметр t: , обе эти функции дифференцируемы, и для первой из них существует обратная функция . Тогда явная зависимость у от х выражается формулой. Находим производную: . Здесь мы воспользовались результатами разделов 6.5.5. Производная сложной функции и 6.3. Производная обратной функции. То же выражение можно получить из 6.8.2. Инвариантности формы первого дифференциала: .

Производные и дифференциалы высших порядков.

роизводные высших порядков. Формула Лейбница. Пусть функция  имеет производную y'(x) в каждой точке интервала (а,b). Функция y'(x) тоже может иметь производную в некоторых точках этого интервала. Производная функции y'(x) называется второй производной (или производной второго порядка) функции и обозначается . Функция y''(x) тоже может иметь производную, которая  называется третьей производной (или производной третьего порядка) функции и обозначается . Вообще n-ой производной (или производной n-ого порядка) функции называется производная от производной n-1-го порядка (обозначения: ).

Основные теоремы дифференциального исчисления.

  В этом и следующем разделах будет исследован вопрос: какую информацию о поведении функции f(x) можно получить, если известны производные этой функции?

Теорема Ферма.

Теорема Ролля

 Пусть функция f (х): 1. непрерывна на отрезке [a,b]; 2. дифференцируема в каждой точке интервала (a,b); 3. принимает на концах отрезка равные значения: f(a) = f(b).

 Тогда на интервале (a,b) найдётся точка с, в которой производная функции равна нулю: f '(с) = 0.

 Док-во. f (х) непрерывна на [a,b], поэтому, по Теор.5.6.4 о достижении минимального и максимального значений, принимает на этом отрезке своё наименьшее m и наибольшее M значения. Возможны случаи: 1. m = M. Это означает, что функция постоянна на [a,b]: f (х) = m = M. Тогда в каждой точке сÎ[a,b]

Теорема Коши. Пусть функции f (х) и g (х): 1. непрерывны на отрезке [a,b]; 2. имеют производные f '(x) и g'(х) на интервале (a,b); 3. g'(х) ¹ 0 на интервале (a,b). Тогда на интервале (a,b) найдётся точка с (a<с<b), в которой .

 Док-во. Отметим предварительно, что g(b) ¹ g(a) (иначе по теореме Ролля нашлась бы точка сÎ(a,b), в которой g '(с) = 0, что противоречит условию теоремы), так что дробь в правой части формулы Коши имеет смысл. Рассмотрим функцию . Эта функция удовлетворяет условиям теоремы Ролля (проверить!), поэтому $ сÎ(a,b), в которой F '(с) = 0. , поэтому в точке с , т.е. , что и требовалось доказать.

 Легко убедиться, что теорема Лагранжа - частный случай теоремы Коши при .

Сравнение скорости роста логарифмической, степенной и показательной функций при .

 Ниже приводятся примеры применения правила Лопиталя для раскрытия неопределённостей. Подчеркнём, что в теоремах Лопиталя предполагается существование предела отношения производных, поэтому бессмысленно пытаться применить это правило к раскрытию, например, следующей неопределённости:

Неопределённость как и в разделе 4.5.3.2. легко свести к неопределённости  или : пусть f(x)®¥, g(x)®0 при х®а. Тогда представление даст неопределённость , представление даст неопределённость . Пример:

Формула Тейлора для многочленов. Рассмотрим следующую простую задачу. Дан многочлен по степеням х: . Требуется представить функцию Р3(x) в виде многочлена по степеням (x+2). Решение: представим х в виде (х+2)-2. Тогда

Решим эту задачу по другому: попытаемся выразить коэффициенты разложения многочлена по степеням (x+2) через производные функции Р3(x).

Форма Пеано остаточного члена формулы Тейлора.

Пусть для функции Rn(x) существуют все производные вплоть до n-го порядка и выполняются условия . Тогда при  эта функция является бесконечно малой выше n-го порядка по сравнению с х- х0.

Представление по формуле Маклорена элементарных функций.

. В этом случае , поэтому

, 0<q<1.

2. . В этом случае все производные чётного порядка равны при х = 0, производные нечётного порядка:  при х = 0, поэтому

Применение формулы Тейлора для нахождения пределов и приближённых вычислений.

Нахождение пределов с помощью формулы Тейлора. Рассмотрим примеры:

. Так как в знаменателе стоит х5, то при представлении функций, стоящих в числителе, по формуле Маклорена, мы должны брать многочлены не ниже пятой степени: ;  (следующий член разложения имеет шестую степень)

Атомная промышленость. Лекции по физике, математике, информатике MATLAB пакет прикладных программ для решения задач технических вычислений