Ядерные двигатели

Ядерная индустрия Архитектура ПК Линейная и векторная алгебра Определенный интеграл ТФКП Математика примеры решения задач Примеры вычислений интегралов Курс лекций Сопротивление материалов
Энергетика
Оборудование атомной станции
Реактор БРЕСТ-2400
Ядерная индустрия
Введение в экологию энергетики
Информатика
Архитектура ПК
Математика
Множества
Линейная и векторная алгебра
Последовательность
Решение задач
Дифференцируемость функций
Исследование функций
Многочлены с комплексными коэффициентами
Определенный интеграл
ТФКП примеры решения задач
Приложения кратных, криволинейных и поверхностных интегралов
Математика примеры решения задач
Примеры вычислений интегралов
Физика Электротехника
Примеры решения задач
Линейные электрические цепи
Теоретические основы
электротехники
Графика
Курс лекций Сопротивление материалов
Сопромат расчеты на прочность
Машиностроительное черчение
Инженерная графика
История искусства
Акварель в архитектурном чертеже.
Мастерская живописи и рисунка
Построение архитектурного пространства
История живописи
Компьютерная математика
MATLAB
Основы графической визуализации вычислений
Пользовательский интерфейс
Операторы и функции
Специальные математические функции
Многомерные массивы
Численные методы
Обработка данных
Основы программирования
Архитектура ПК

 

Ядерные двигатели для транспорта Атомный флот Практически сразу после создания, энергетические ядерные реакторы были модернизированы с целью создания двигателей для атомного флота.

Строительство первой советской атомной подводной лодки К-3 («Ленинский Комсомол») пр. 627А (класса «Ноябрь» началось 24.09.1955 в г. Молотовске (сегодня г. Северодвинск)

Строительство первой серии АПЛ третьего поколения пр.941 (класса "Тайфун") началось в 1977.

Несерийные подводные лодки За всю историю строительства АПЛ было создано 5 экспериментальных кораблей.

Атомная установка четвертого поколения представляет собой моноблок (или интегральную схему компоновки). Очевидным преимуществом такой компоновки является локализация теплоносителя первого контура в одном объеме и отсутствие патрубков и трубопроводов большого диаметра.

Одним из главных недостатков АПЛ с жидким металлическим теплоносителем явилось использование сплава «свинец-висмут» в первом контуре реакторной установки.

Атомные надводные военные корабли За период с 1974 по 1995 годы на Балтийском заводе в Санкт-Петербурге было построено 4 атомных крейсера («Адмирал Нахимов», «Адмирал Лазарев», «Адмирал Ушаков», «Петр Великий» и один атомный корабль связи «Урал».

Атомная установка для надводных кораблей КН-3 (активная зона типа ВМ-16) создавалась на опыте строительства и эксплуатации ЯЭУ ледоколов

Обогащение топлива водо-водяных реакторов по урану-235 составляет 21% для лодок первого и второго поколений и 43-45% для АПЛ третьего поколения

Атомные ледоколы были созданы для облегчения перевозки грузов вдоль северного побережья Сибири, в водах, закрытых льдами, мешающими плаванию почти весь год

Все атомные ледоколы типа «Арктика» построены на Адмиралтейской верфи (С.­Петербург), «Вайгач» и «Таймыр» - на верфи Финляндии, а «Севморпуть» - в Керчи.

Реактор контейнеровоза «Севморпуть» передает винтам мощность в 44000 л.с. Реактор подобен реакторам «Таймыра» и «Вайгача» и вмещает максимум 274 ТВС. Система охлаждения реактора несколько отличается системы других атомоходов.

Каждая энергетическая установка состоит из отдельных блоков, в каждом блоке находятся: реактор водо-водяного типа, четыре циркуляционных насоса и четыре парогенератора, компенсатор объема, ионообменный фильтр с холодильником и другое оборудование.

Авиация В России и США предпринимались неоднократные попытки создания самолетов с двигателями на базе ядерных энергетических установок. Это сулило беспредельную дальность полёта.

Однако в чистом виде этого сделать не удалось. Фирма «Пратт-Уитни» работала над ядерной силовой установкой закрытого цикла. Существенным достоинством этой схемы являлось отсутствие выбросов радиоактивных продуктов из двигателей

В СССР идея создания ядерного двигателя для самолётов впервые обсуждалась 24.03.1947 на Научно-техническом совете

Экипаж предполагалось разместить в глухой капсуле с мощной многослойной защитой из специальных материалов. Радиоактивность атмосферного воздуха исключала возможность использования его для наддува кабины и дыхания

М.Мясищев начал разработку проекта летающей лаборатории на основе М-50, на которой один атомный двигатель размещался в носовой части фюзеляжа

В 1958 на одном из аэродромов под Семипалатинском (база Половинка) был построен наземный испытательный стенд на основе средней части фюзеляжа Ту-95.

Испытания Ту-95ЛАЛ показали достаточно высокую эффективность примененной системы радиационной защиты, но при этом выявили ее громоздкость, слишком большой вес и необходимость дальнейшего совершенствования.

Программа предполагала, что в 1970-х гг. начнется проработка серии атомных сверхзвуковых тяжелых самолетов под единым обозначением «120» (Ту-120)

За кабиной пилотов расположили отсек операторов противолодочного оружия, бытовые помещения, спасательный катер на случай посадки на воду, биозащиту и сам реактор.

Космические двигатели Ученые и инженеры, работающие в области космонавтики, всегда стремились создавать наиболее эффективные ракетные двигатели

В январе 1973 изменение приоритетов в стратегии развития американской науки и техники заставило НАСА отказаться от своих планов осуществления пилотируемых межпланетных полетов и создания для этих целей ЯРД

В СССР решение о создании ядерных стратегических ракет и ракет космического назначения было принято в 1957. Реальные эксперименты в этом направлении были начаты, после пуска на Семипалатинском полигоне импульсного реактора ДОУ-3

Ядерный ракетный двигатель - ракетный двигатель, рабочим телом в котором служит либо какое-либо вещество (водород), нагреваемое за счет энергии, выделяющейся при ядерной реакции или радиоактивном распаде, либо непосредственно продукты этих реакций. Различают радиоизотопные, термоядерные и собственно ядерные ракетные двигатели (используется энергия деления ядер).

Ядерный взрывной двигатель Использование энергии атомного взрыва. В 1960-х годах НАСА и Комиссия по атомной энергии США исследовали довольно экзотический метод получения тяги в рамках проекта «Орион». В этом методе разгон ракеты до большой скорости, необходимой для полета к другим планетам, осуществлялся путем последовательных взрывов небольших атомных зарядов, выбрасываемых за ракетой.

Один из возможных вариантов двигателей для отрыва от Земли - это устройства, в которых урановый ядерный реактор будет разогревать водород до 2500 C, затем этот водород будет смешиваться с атмосферным воздухом и сгорать при температуре 4000 C

В 50-е ядерные двигатели с газовой активной зоной привлекли внимание специалистов благодаря своим высоким характеристикам: в то время удельная тяга оценивалась величиной 6000 с при тяге, достигающей 130 кг.

В 60-х рассматривалась замкнутая и открытая схемы ядерных двигателей с газовой активной зоной. Основная проблема при разработке газофазного реактора - снижение потерь делящегося вещества, которые не должны превышать долей процента от расхода рабочего тела

Преимуществом использования в замкнутых схемах ГФЯР, в котором вместо твердых твэлов используются газообразные, является принципиальная возможность обеспечения весьма длительного функционирования за счет соответствующей подпитки горючим взамен выводимых из контура во внешнюю среду продуктов ядерных реакций

Двухслойная прозрачная стенка поглощает менее 1% энергии излучения, испускаемой ядерным горючим, которая затем уносится охладителем ампулы (например, гелием).

Безопасность. С самого начала создания ЯРД особое внимание уделяли предотвращению нежелательных воздействий реактора на биосферу Земли при аварийном прекращении полета.

Благодаря трансформируемой конструкции установка может работать в двух режимах: - двигательном (газофазном) тягой 17 т при удельном импульсе 2000 с - на разгонных и тормозных участках траектории; - энергетическом (твердофазном) с электрической мощностью 200 кВт для обеспечения внутренних нужд космического аппарата без расходования рабочего тела - на маршевом участке траектории

Предотвращение загрязнения окружающей среды выбрасами АЭС Как и любая энергетическая система, АЭС выделят в окружающую среду вредные вещества, в том числе - радиоактивные. Сбросы бывают двух типов - жидкие и газообразные.

Проблема снижения выбрасов АЭС Масштабы строительства, прогнозы развития атомных электростанций (АЭС), теплоэлектроцентралей (АТЭЦ) и станций теплоснабжения (АСТ) во многих странах свидетельствуют о возрастающей, а для некоторых стран решающей роли ядерной энергетики в электроснабжении и выработке тепла среднего и низкого потенциала для промышленного и коммунально-бытового теплоснабжения.

Выделяют два принципиально различных направления в работах по снижению загрязнения окружающей среды: активный и пассивный. Применительно к атомной энергетике активный способ заключается в предупреждении выбросов радиоактивных продуктов в окружающую среду в результате совершенствования технологических схем и оборудования; в создании замкнутого технологического процесса, исключающего выброс этих продуктов в окружающую среду; в отработке и совершенствовании топливных элементов; в создании высокоэффективных систем очистки.

Выбрасы радиоактивных веществ в атмосферу Любая работающая АЭС оказывает мощное влияние на окружающую среду по трем направлениям: газообразные (в том числе радиоактивные) выбросы в атмосферу, выбросы большого количества тепла и неизбежное распространение вокруг АЭС какого-то количества жидких радиоактивных отходов.

Источники газообразных радионуклидов Хотя принцип работы всех реакторов, где используется реакция деления, одинаков, их технологические схемы и оборудование в зависимости от типа реактора и применяемого теплоносителя различны. Поэтому, несмотря на практически одинаковые источники радиоактивных отходов на атомных станциях, возможные пути проникновения радиоактивных веществ в окружающую среду различаются.

При работе АЭС образуются три вида радиоактивных отходов: твердые, жидкие или газообразные. Газообразные отходы после очистки и фильтрации рассеивают в атмосфере через вентиляционные трубы с соблюдением нормативов по выбросу радиоактивных веществ. Жидкие отходы очищают, фильтруют, разбавляют или концентрируют и хранят в емкостях в жидком виде или предварительно отверждают. Это повышает безопасность и надежность хранения.

Атомная промышленость. Лекции по физике, математике, информатике MATLAB пакет прикладных программ для решения задач технических вычислений